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actions. Whereas the Peaslee18 and True and Ford20 

interactions do not have any triplet component, the 
interactions determined by TWP,21 Raz and French22 

and BKS23 vary from 0.2 to 0.4. I t must however be 
remembered that these interactions have been derived 
from various available data such as nuclear energy 
levels, transition probabilities, magnetic moments and 
stripping reactions. Though it is obvious that any of 
these properties must be satisfactorily explained by a 
given set of parameters, due to the approximations that 
are involved in determining these properties (and the 
insufficient knowledge about the nucleon-nucleon po­
tential), the situation becomes complicated. In other 
words, forms of interactions are different as one goes 
from one property of the nucleus to another, which is 
not at all surprising. I t should also be mentioned that 
while the parameters of Barker12 and Peaslee18 have 
been determined from the analysis of Pyi and syz 
doublets in the 4̂ — 16 region which would not involve 
any configuration mixing as far as the \ x j doublets are 
concerned, the effect of admixtures has been quite pre­
dominant as far as the quantitative agreement of the 
positions of the energy levels are concerned. The analysis 

20 W. W. True and K. W. Ford, Phys. Rev. 109, 1675 (1958). 
21V. K. Thankappan, Y. R. Waghmare, and S. P. Pandya, 

Progr. Theoret. Phys. (Kyoto) 26, 22 (1961). 
22 B. J. Raz and J. B. French, Phys. Rev 104, 1411 (1956). 
2 3 1 . M. Band, Yu I. Kharitonov, and L. A. Sliv, Nucl. Phys. 35, 

136 (1962). 

1. INTRODUCTION 

TH E possibility that velocity-dependent potentials 
(v.d.p.) could replace the hard core of the 

nucleon-nucleon potential, permitting more tractable 
calculations in many-body problems, was suggested by 
Peierls1 at the Kingston Conference. I t has since been 
discussed by many authors.2 

1 R. E. Peierls, Proceedings of the International Conference on 
Nuclear Structure, Kingston, 1960, edited by D. A. Bromley and 
E. W. Vogt (North-Holland Publishing Company, Amsterdam, 
1960), p. 7. 

2 M. Razavy, G. Field, and J. S. Levinger, Phys. Rev. 125, 269 
(1962); O. Rojo and L. M. Simmons, ibid. 125, 273 (1962); A. M. 

of our work in Sees. I l l and IV differs from the rest of 
the authors in two ways: (1) while the configuration 
mixing is entirely neglected by Dawson, Talmi, and 
Walecka,9 the triplet forces are entirely neglected by 
Peaslee18 and True and Ford.20 (2) The nature of the 
interaction is assumed the same in all the configura­
tions. I t has however been indicated by Thankappan, 
Waghmare, and Pandya21 that the two-body effective 
interaction in Zr90 is configuration-dependent. This is 
more evident from our present analysis where we take 
into account both the singlet as well as triplet forces and 
the effect of configuration mixing as well. In view of the 
calculations on the many-body systems, such an effect 
may not be observed in Be10. However, it is certainly 
important in the case of Ni58 where the first excited 
state in Ni57 lies close to the ground state. I t is thus 
clear that the interactions that we have derived in 
subsequent sections determine the nature of the effec­
tive nucleon-nucleon potential. I t is also clear that it is 
not possible, at this stage, to get such an information 
about the d-s shells. 
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Green's calculations are the most extensive, and they 
have been supplemented by Preston, Armstrong, and 
Bhaduri. The phase-shift data were fitted quite well, 
although the agreement obtained is probably not the 
best possible. The triplet odd parameters, in particular, 
could be readjusted with advantage. The potential used 
by these authors was of the form 

- V{r)+nrl(p2u(r)+o>(r)p2), 

Green, Nucl. Phys. 33, 218 (1962); M. A. Preston, P. J. 
Armstrong, and R. K. Bhaduri, Phys. Letters 2, 183 (1962); 
E. Werner, Nucl. Phys. 35, 324 (1962); F. Peischl and E. Werner, 
ibid. 43, 372 (1963). 
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An expansion of the shell-model matrix elements of the velocity-dependent potential mr^pW(r)-\-V'{r)p2~] 
in the Talmi integrals of V is derived and applied to calculate the energy levels of O18 using the nucleon-
nucleon potential of Green. It is found that the correct ordering of the levels is obtained but the potential 
must be altered slightly to obtain agreement comparable with that given by Dawson, Talmi, and Walecka 
using the Brueckner-Gammel-Thaler potential. 
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where V is a mixture of Gaussian and Yukawa forms, 
and includes tensor and spin-orbit forces, and w is a 
Gaussian potential. In view of the success obtained in 
representing the two-body data with such a potential, 
it would seem to be useful to do shell-model calculations 
using it. 

O18 has been investigated in the shell model by 
various authors. The early work of Elliott and Flowers3 

showed that reasonable agreement with the experi­
mental level structure could be obtained using a 
Rosenfeld type potential which fitted the low-energy 
two-body data, and that the ground state was at too 
high an energy, unless the ldz/2 configuration were 
included. Similar results were obtained by Dawson, 
Talmi, and Walecka,4 who used the Brueckner-Gammel-
Thaler potential, treating the hard cores by the Bethe-
Goldstone method. There have also been some attempts 
to obtain the matrix elements of the residual inter­
action from the energy levels of O18, O19, and O20. The 
most recent attempt is that of Pandya.5 He included 
only IJ5/2 and 2s 1/2 configurations, so the results of 
Elliott and Flowers and D.T.W. would suggest that 
he would overestimate in magnitude the matrix element 

< ( i ^ / 2 ) 2 / = o | F | (idmyj=o). 

In all cases, the interaction of the two outer neutrons 
with the core is taken empirically from the position of 
the f+, ^+, and f+ levels in the O17 spectrum, shown in 
Fig. 1. The core energy and the contribution of the 
particle-core interaction is subtracted out of the experi­
mental data for comparison with the results of the 
calculation. In Fig. 1 the ground state of O17 is placed 
at an energy 

B.E.(017)-B.E.(016) 

and the ground state of O18 at the energy 

B.E.(018)-B.E.(016)-2{B.E.(017)-B.E.(016)}. 

A shell-model calculation of the energy levels of O18 

using the velocity-dependent potential of Green has 
been carried out. It is found that this potential leads to 
matrix elements which are similar to and slightly less 
than those obtained by D.T.W. The energy levels have 
been calculated using U5/2 and 2si/2 configurations only, 
diagonalizing the matrices in Table I, and are found 
to be correctly ordered but to lie rather high. 

A detailed comparison with the results of D.T.W. 
suggests that an increase in the strength of the Gaussian 
singlet potential and a decrease in the strength of the 
velocity-dependent part would be the simplest way to 
improve the agreement. It is not at present known 
whether it is possible to choose a potential which would 
improve the agreement with the energy levels and not 

3 J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London) 
229, 536 (1955). 

4 J. F. Dawson, I. Talmi, and J. D. Walecka, Ann. Phys. (N. Y.) 
18, 339 (1962). Referred to as D.T.W. 

6 S. P. Pandya, Nucl. Phys. 43, 636 (1963). 
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FIG. 1. Observed energy levels of O17 and O18 (energies in MeV). 

be inconsistent with the two-body phase shifts. How­
ever, it appears that the answer to this problem will be 
more straightforward with velocity-dependent po­
tentials than with hard-core potentials. 

2. CALCULATION OF MATRIX ELEMENTS 

Because the isotopic spin of O18 is unity, only the 
singlet even and triplet odd potentials contribute. 
These potentials will be denoted by Vo and V\. Green's 
potential has the form 

F0= Voc(r)+m~1(pW0
p(r)+ V0

p(r)p2), 

Fi= VS (r)+ V?(r)hs+ V1
t(r)S12, 

where r and p are the relative position and momentum 
of the two nucleons, and l«s and S12 are the usual spin-
orbit and tensor operators.6 

TABLE I. Hamiltonian matrices for O18, including the 
Us/2 and 2si/2 configurations. 

Ej=((id5I2yj\v\(id5/2)u) 
Eo'=((2sm)V=0\V\ (2s1/2)U=0) 
E/ = (ld5/22si,2J\V\ld5/22smJ) for 7 = 2 , 3 
Fo = «ld6/t)*J=0\V\(2sm)*J=Q) 
F2 = {(ldu2)2J=2\V\ld5,22s1/2J=2) 

A is the difference between the f+ and J+ levels in the O1 

spectrum. 
1. 7 = 0 EQ F0 

F0 7V+2A 
2. J=2 E2 F2 

F2 E*'+A 
3. 7 = 3 Et'+A 
4. 7 = 4 £ 4 

6 M. A. Preston, Physics of the Nucleus (Addison-Wesley 
Publishing Company, Inc., Reading, Massachusetts, 1962), 
Chap. 5. 
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TABLE II. Parameters of Green's potential. The radial potential is 
V(r) = -A exp(-r2/c2)-B(/ir)-1e-'ir(l-e-0"ir). 

Force A c B a 

Singlet central 49.1 MeV 1.268 F 11.02 MeV 6 
Triplet central -3 .69 MeV 6 
Triplet spin orbit 82.9 MeV 1.04 F 
Triplet tensor -14 .5 MeV 6 
Singlet v.d.p. -1 .14 0.695 F 

For the radial factors V(r), Green assumed a form 

V 0 ) = - A exp ( - r2/c2) - B O ) - 1 ^ (1 - e~^r) , 

with fx=0.7082 F_ 1 . The parameters of his singlet even 
potential (a) and triplet odd potential (a), used in the 
present calculation, are given in Table I I . 

The matrix elements of the potential have been 
obtained using the transformation to relative motion 
and center-of-mass states first discussed by Talmi.7 

The notation of Brody and Moshinsky8 has been fol­
lowed. The relative and center-of-mass coordinates they 
introduce are slightly unusual, being defined by 

r ' = 2 - ^ ( r i - r 2 ) , p , = 2 - ^ ( p i - p 2 ) , 

R' = 2 - ^ ( n + r 2 ) , F = 2 - i / 2 ( P l + p 2 ) . 

The transformation from rx and r2 to r ' and R' leaves 
the harmonic oscillator Hamiltonian invariant in form. 
\n1hn2hLM) is the unsymmetrized two-particle state, 
with particle 1 in the state mh and particle 2 in the 
state W2/2, the particles being coupled to a total angular 
momentum L, M. \nkNKLM) is the state with the 
relative motion characterized by the quantum numbers 
nk and the center-of-mass motion by NK, the total 
angular momentum being L, M. We may transform 
from one representation to the other 

I nihnzhLM) = E I nkNKLM) (nkNKL | nihn2hL), 

where the summation is over all values of n, k, N, K, 
which are consistent with the conservation laws. The 
transformation brackets {nkNKL\n^\n2hL), which are 
known to be independent9 of M are those tabulated by 
Brody and Moshinsky.8 They also tabulate the co­
efficients B (n'k' ;nk; p) of the expansion in terms of the 
Talmi integrals 7 P [ 7 ] of (rik'\\V\\nk)™ the reduced 
matrix elements between relative motion states of a 

7 1 . Talmi, Helv. Phys. Acta 25, 185 (1952). 
8 T . A. Brody and M. Moshinsky, Tables of Transformation 

Brackets (Monografias del Institio de Fisica, Mexico, 1960). 
9 E . U. Condon and G. H. Shortley, The Theory of Atomic 

Spectra (Cambridge University Press, Cambridge, England, 
1963), p. 49. 

10 The reduced matrix element is defined here so that the matrix 
elements and reduced matrix elements of a scalar are identical. 
See Brink and Satchler, Angular Momentum (Clarendon Press, 
Oxford, England, 1962), p. 57. 

M c K E L L A R 

central potential V(r). 

(»/Jfe/||7||»*) = E p 5 ( » / * / ; » f t ; # ) / p [ 7 ] > 

2 r00 

where a= (ft/moS)112 is the harmonic oscillator length 
parameter. The value a= 1.71 F u has been used in this 
calculation. Analytic expressions for / P [ F ] are given 
by Thieberger12 for various common potentials. Those 
required are 

7 p [ e x p ( - r 2 / c 2 ) ] - (l+2a2/c2)-(v+», 

hl^r/r~]^2^Tr-v2arl{p tye^2Hh2p+iM, 

where Hhn(z) is the Hermitian probability integral 
defined by13 

nlHhn(z)= / e x p [ - ! ( 3 + 0 2 ] * * * . 
. / 0 

The properly symmetrized states | ) are built from 
the unsymmetrized states | ) in the usual way. With 
p as a shorthand for n, /, j 

I p^JMT)=2^2l I WJM)+ ( - \)h+h-J+T j p$jM)~] 

if /3i5*/32 and 

\t32JMT) = Kl+(-l)2j~J+Tl\P2JM). 

j-j coupled matrix elements are in turn obtained 
from L-S coupled matrix elements, which are calculated 
using Racah algebra and the Talmi transformations. 
a is used to represent the quantum numbers nihn^h 
and V/ for the a, X part of the potential, for example 

V0
p= m-Kp2Vop(r)+ V0

p(r)p2) 
and 

V1
v=Viv(r)bs. 

The L-S matrix elements of e0<r
x are expanded as a 

series of Talmi integrals 

(a'L'S'JMlV^aLSJM) 

= «5'A*, UP C/(a'L';aL; J:p)IJ[V^ 

The results for central spin-orbit and tensor forces are 
given by Brody and Moshinsky. 

= 8I/L E B(n'k;nk;p) 
nn' k 

X E (rikNKL I a'L) (nkNKL \ aL), 
NK 

11 P. Goldhammer, Rev. Mod. Phys. 35, 40 (1963). 
12 R. Thieberger, Nucl. Phys. 2, 533 (1957). 
13 British Association Mathematical Tables (Cambridge University 

Press, Cambridge, England, 1946), 2nd ed., Vol. 1, H. Jefferies 
and B. S. Jefferies, Methods of Mathematical Physics (Cambridge 
University Press, Cambridge, England, 1956), 3rd ed., p. 622. 

file:///n1hn2hLM
file:///nkNKLM
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Civ(aL;aL;J:p) There are many ways to do this. Possibly the simplest 
makes use of the relation 

[V 1 / ) 
= ( - 1 ) J [6 (2L '+1) (2L+1)] 1 / 2 {rik\\\m^p'2^\nu^r,2\\nk)^ (2»+*+i)Aa>5„,„ 

l J. l^d 1 J 

to relate the matrix elements of p'2 to those of r'2. The 
X E B (rik ;nk;p)A (a'U; aL; rink), w a v e function (/00 \ nkm) is given by 

nn'k 

where O'0<£ I nkm) = i?n& (//a) Ykm (0,0), 

y l ( a / L / ; a L ; ^ , ^ ) [ ^ ( ^ + l ) ( 2 ^ + l ) ] - 1 / 2 where Yhm{e,<t>) is the normalized spherical harmonic 
with the Condon and Shortley definition of phases, 

= E irikNKL' I olV) (nkNKL \aL) 

X ( - 1 ) + ) L fe J ' ( a ) » = f l ( a + l ) - - . ( a + » - l ) , 

and and 1F1 (a; £; JS) is the Kummer confluent hyper-

T H ' / ' • T • 7 r-aTl20(2/M-lH2L44Y~h1 /2 geometric function. Using the recurrence relation14 

= ( - l ) i + ' j 1 E B(rik';nk;p) +(b-a) & (a-1; b; z), 
[ 1 Z, 2 J n'^nft we can show that 

XD{a'Lf-aL-rikf-nk), | > 2 ~ (2»+*+f)]12„*(*)= - ( » + l ) 1 / 2 ( » + * + t ) 1 / 2 

where X^ i ,* (a ; ) -» 1 / 2 (»+*+J ) 1 / 8 iZ^ . i , i bW. 

D(a 'Z/; aL; w'fc'; nk)[_(2k'+1)(2&+1)]_1/2 The reduced matrix elements of r'2 are therefore given 

= E (n'k'NKV I a 7 / ) (wftiVTSX | aL) b y 

flr2(»/*||r/2||»*)- ( 2 » + * + f )5W'n 

X ( . 1 ) W + / * 2M*' U K\ =-n^(n+*+i)^,f^1 
\ 0 0 0 / U * 2J " - ( w + l ) 1 ' 2 ^ — ( ^ + l ) 1 / 2 ( ^ + ^ + f ) 1 / 2 5 ^ ^ + 1 , 

giving 
The 3j and 67 symbols are defined with the same 

phase as in Brink and Satchler.* [a a /* 2](» *||# 2 I M ) ~ (2»+4+*)*„*» 
The calculation of the C coefficients for the velocity- = n1/2(n+k+%)1/28n> ,n-i 

dependent potential is outlined in the next section. -f ( n + l ) 1 / 2 ( » + * + f )1/25„/ ,,,4-1. 

The coefficient C(T
p(aL';aL;J:p) may then be 

expressed in the form 
3. THE VELOCITY-DEPENDENT POTENTIAL 

fl2 The velocity-dependent term in the potential is, 
when written in terms of r' and p ' (omitting the sub- pf , , , ^ r^hAnrri fr\ 

. . * ta(aL;aL;J:p) = OL'L ZU (n krsKL\a L) 
and superscripts), 2ma2 «'»*** 

D = | m - K ^ F ( v 2 / ) + F ( v 2 / ) ^ 2 ) . x (nkNKL\aL)T(rink:p), 

Using the Talmi transformation we obtain r(»'nft; #) = E B(sk;tk;p)y(rink;st)y 

{arLSJM\V\aLSJM)=T. (rik\\V\\nk) st 

and the 7 coefficient is given algebraically in Table I I I . 
X E (rikNKL\a'L)(nkNKL\aL). 

JVX TABLE III. The coefficient y(n'nk; st). 
I t is obvious that • 

(» '* | |^F | |nf t )= E (» /ft||^||» , /ft , ,)(» , ,* , ,H^II»*) ^ 
n"h" n'-l ri^in'+k+i)1^ 

and w ' wi/2(n+jfe+j)i/2 2(w'+»)+2ife+3 (»+l)1/a(»+*+})1/a 

»—1 n n+l 

(rik\\ Vp,2\\nk) = E (n'k\\ V\\ri'k") {ri'k"\\pf2\\nk), » '+! (w'+l)1/2(n'+£+f) 1/2 

_ . . • r T , v i. • 1 4- -c 1 41. N. Sneddon, Special Functions of Mathematical Physics and 
so the essential step in finding the matrix elements ol chemistry (Oliver and Boyd, Edinburgh, Scotland, 1961), 2nd 
13 is the determination of the matrix elements of p'2. ed., p. 38. 
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The velocity-dependent potential is very short 
ranged, so the Talmi integrals decrease rapidly as p 
increases, and therefore Cp( :p) is required for small 
values of p only. In T(rink;p) p takes the values k, 
k+1, •••, k+ri+n. Algebraic formulas for the B 
coefficients are used to derive an algebraic expression 
for T(rink;k+q) which is simple for small q. The 
general expression given by Brody, Jacob, and 
Moshinsky15 for B is very complicated, but more 
straightforward formulas may be derived for 

B(rik; nk; k-\-q) 

for small q. When q=0 

B(n'k;nk;k)={(k+%)n>(k+%)n/n'lnl}W, 

and for q^O define 

B(rik;nk;k+q) = b(rink;q)B(rik;nk;k). 

Then 

— b(rink; 1)= (ri+n), 

ri(ri-l)+n(n~l) 2&+5 
b(rink;2) = Yrin-

-b{ririk; ?>)--

2! 2&+3 
f(ri-\){ri-2)+n(n-\)(n-2) 

3! 
rin(ri+n-2) 2k+1 

2! 2k+3 

Substituting in the equation for T, the following ex­
pressions are obtained: 

T (rink ;p) = B (rik; nk; k)V {rink; p), 

Y'in'nk; *) = 4(» /+»)+4ft+6, 

-Tf(rink;k+l)==l4:(ri+n)+U+6'](ri+n)+2k+3, 

T'(rink; k+2) = -2rin- (ri+ri)(ri+n+k+J) 

+2(ri2+ri)(ri+n+k+l) 

2k+$ 
+r4(ri+n)+4:k+6~]rin 

2&+3 

+i(ri+n)(2k+5). 

In this calculation we retained only the terms in 
/o [F p ] and Ii[Vp~]. This is equivalent to the assump­
tion that the velocity-dependent potential is sufficiently 
short ranged to affect the s and p states only, and is to 
be compared with the approximation of D.T.W. that 
the hard core affects only the s states. 

16 T. A. Brody, G. Jacob, and M. Moshinsky, Nucl. Phys. 17, 
16 (1960). 
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FIG. 2. Energy levels of O18. v.d.p. given by the present calcu­
lation using Green's potential and including 1̂ 5/2 and 2su2 con­
figurations. D.T.W. (a): Calculated by D.T.W. using ld5/2 and 
2si/2 configurations. D.T.W. (b): Calculated by D.T.W. using 
1̂ 5/2, 2*1/2, and U3/2 configurations. 

4. RESULTS 

If the series to first order for 

(rik\\Vc\\nk) 

(rik\\Vp\\nk) 
and 

are compared, 

(rik\\Ve\\nk) = B(rik; nk; k)l£Vc2+" • 
(^ | | e 0 p | | ^ ) = [ 4 ( ^ + ^ ) + 4 ^ + 6 ] 5 ( ^ ; nk; k) 

xi£v*3+~-, 
it is apparent that the velocity-dependent potential 
cannot be taken into account by a modification of 
Ik\_Vc~] because the contribution is dependent on n 
and ri. D.T.W. took the hard core into account by 
modifying IQ[VC~]. In principle, this gives a means of 

TABLE IV. Matrix elements of the residual interaction. 

Matrix 
element 

Present 
calculation D.T.W. Pandya 

£ 0 
E2 
£ 4 
Eo' 
E2' 
E*' 
F0 
F2 

-1.558 
-0.715 
-0.337 
-1.834 
-0.986 
-0.312 
-0.515 
-0.560 

-1.964 
-1.602 
-0.766 
-3.019 
-1.689 
-0.649 
-0.952 
-0.780 

-3 .00 
-1 .20 
-0 .37 
-2 .90 
-1 .65 
+1.50 
-1 .50 
-0 .93 



V E L O C I T Y - D E P E N D E N T P O T E N T I A L S B1195 

FIG. 3. Energy 
levels from a Green-
type potential with 
velocity - dependent 
part zVp. 

J 

0 

3 
2 
0 
4 
2 FIG. 4. Energy 

levels from a Green-
type potential with 
a singlet Gaussian 
-1.2SA exp(-f2/c2) 
and a velocity-de­
pendent part zX)p. 

distinguishing the two potentials. However, comparing 
the energy levels D.T.W. (a) obtained by D.T.W. 
using the IJ5/2 and 2s u 2 configurations, and the levels 
v.d.p. given by Green's potential in Fig. 2, it is difficult 
to discern the difference. The necessity of including the 
ldz/2 states is illustrated by the comparison of the levels 
D.T.W. (a), which omit them, and D.T.W. (b), which 
include them. 

To illustrate the effect of changing the potential, 
Fig. 3 shows the energy levels for a potential similar to 
Green's, but with the velocity-dependent part multi­
plied by a factor z plotted as a function of z. Figure 4 
is similar, but in this case the Gaussian part of the 
static singlet potential has been multiplied by a factor 
1.25. This suggests that a better fit can be obtained by 

TABLE V. Contributions to matrix elements 
{(id5/2yj\v\(id5/2)u). 

J 

0 

2 

4 

v.d.p. 
D.T.W. 

v.d.p. 
D.T.W. 

v.d.p. 
D.T.W. 

Singlet 
central 

-2.835 
-3.209 

-0.770 
-1.183 

-0.481 
-0.671 

Central 

+0.093 
-0.145 

+0.114 
-0.176 

+0.112 
-0.150 

Triplet 
spin-
orbit 

+0.452 
+0.557 

-0.170 
-0.300 

-0.102 
-0.098 

Tensor 

+0.732 
+0.833 

+0.111 
+0.057 

+0.133 
+0.153 

Total 

-1.558 
-1.964 

-0.714 
-1.602 

-0.338 
-0.766 

increasing the static singlet strength and decreasing 
the velocity-dependent strength. 

This same conclusion may be arrived at by a more 
detailed comparison with the results of D.T.W. The 
matrix elements derived from Green's potential, those 
of D.T.W. and of Pandya are given in Table IV. The 
present matrix elements are consistently less in mag­
nitude than those of D.T.W. (Table V) which shows 
the contribution of the various parts of the potential 
to the matrix elements ((1^5/2)2/| V\ (1^5/2)2J) suggests 
that the singlet potential is too weak. 

While variation of the singlet potential seems to be 
necessary to obtain results comparable with those of 
D.T.W., it is possible that variation of the triplet poten­
tial would also improve the fit to the observed energy 
levels. It is, at present, an open question whether it is 
possible to alter the potential, at the same time to im­
prove the agreement both with the energy levels of 
nuclei in the shell model and the two-body data. 
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